HW 8: ANALYSIS

1. The sequence $a_{0}, a_{1}, a_{2}, \ldots$ satisfies

$$
a_{m+n}+a_{m-n}=\frac{a_{2 m}+a_{2 n}}{2}
$$

for all nonnegative integers m and n with $m \geq n$. If $a_{1}=1$, determine a_{n}.
2. Compute

$$
\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\ldots}}}}
$$

3. Show that the series

$$
\frac{1}{1+x}+\frac{2}{1+x^{2}}+\frac{4}{1+x^{4}}+\frac{8}{1+x^{8}}+\ldots+\frac{2^{n}}{1+x^{2^{n}}}+\ldots
$$

converges when $|x|>1$, and in this case find its sum.
4. Let $\mathrm{a}_{\mathrm{n}}=\sqrt{1+\left(1+\frac{1}{n}\right)^{2}}+\sqrt{1+\left(1-\frac{1}{n}\right)^{2}}, \mathrm{n} \geq 1$. Prove that

$$
\frac{1}{a_{1}}+\ldots+\frac{1}{a_{20}}
$$

is an integer.
5. Let a and b be real numbers in the interval $\left(0, \frac{1}{2}\right)$ and let f be a continuous real-valued function such that

$$
f(f(x))=a f(x)+b x
$$

for all $x \in \mathbb{R}$. Prove that $f(0)=0$.
6. Suppose that $\mathrm{f}:[0,1] \rightarrow \mathbb{R}$ has a continuous derivative and that $\int_{0}^{1} f(x) d x=0$. Prove that for every $\alpha \in(0,1)$:

$$
\int_{0}^{\alpha} f(x) d x \leq \frac{1}{8} \max _{x \in[0,1]}\left|f^{\prime}(x)\right|
$$

7. Let f be a real function on the real line with continuous third derivative. Prove that there exists a point a such that

$$
f(a) f^{\prime}(a) f^{\prime \prime}(a) f^{\prime \prime \prime}(a) \geq 0
$$

